Northern University, Nowshera

Interfaces in Java

Week # 15 - Lecture 29 - 30

AJ/ Week 15-Lecture 29-30 Object Oriented Programming using Java (ECS-122)

Learning Objectives

= Interfaces

= Why interfaces?

= Implementing interfaces
= Default methods

= Extending interfaces

= Extending multiple interfaces

AJ/ Week 15-Lecture 29-30 Object Oriented Programming using Java (ECS-122)

Interfaces

The word is probably familiar to you. For example, most computer programs and games have
interfaces. In a broad sense, an interface is a kind of 'remote control' that connects two
interacting parties. A simple example of an interface in everyday life is a TV remote control. It
connects two object — a person and a TV — and performs different tasks: turn up or turn

down the volume, switch channels, and turn on or turn off the TV.

One party (the person) needs to access the interface (press a button on the remote control) to

cause the second party to perform the action.

For example, to make the TV change to the next channel. What's more, the user doesn't need
to know how the TV is organized or how the channel changing process is implemented
internally. The only thing the user has access to, is the interface. The main objective is to get

the desired result.
What does this have to do with programming and Java?

Creating an interface is very similar to creating a regular class, but instead using the word class,
we indicate the word interface. Let's look at the simplest Java interface, see how it works, and

why we would need it:
public interface CanSwim {

public void swim();

}

We've created a CanSwim interface. It's a bit like our remote control, but with one 'button':

the swim() method. But how do we use this remote controller?

To do this, we need to implement a method, i.e. our remote control button. To use an

interface, some classes in our program must implement its methods.

Let's invent a class whose objects 'can swim'. For example, a Duck class fits:

AJ/ Week 15-Lecture 29-30 Object Oriented Programming using Java (ECS-122)

public class Duck implements CanSwim {

public void swim() {
System.out.println("Duck, swim!");
}

public static void main(String[] args) {

Duck duck = new Duck();
duck.swim();

}

What do we see here?

The Duck class is 'associated' with the CanSwim interface by the implements keyword. You
may recall that we used a similar mechanism to associate two classes through inheritance, but
in that case we used the word extends. For complete clarity, we can translate 'public class
Duck implements CanSwim' literally as: 'The public Duck class implements the CanSwim
interface'. This means that a class associated with an interface must implement all of its
methods. Note: our Duck class, just like the CanSwim interface, has a swim() method, and it
contains some logic. This is a mandatory requirement. If we just write public class Duck
implements CanSwim without creating a swim() method in the Duck class, the compiler will

give us an error:

Why? Why does this happen? If we explain the error using the TV example, it would be like
handing someone a TV remote control with a 'change channel' button that can't change
channels. You could press the button as much as you like, but it won't work. The remote
control doesn't change channels by itself: it only sends a signal to the TV, which implements
the complex process of channel changing. And so it is with our duck: it must know how to

swim so it can be called using the CanSwim interface.

If it doesn't know how, the CanSwim interface doesn't connect the two parties — the person
and the program. The person won't be able to use the swim() method to make a Duck swim

inside the program. Now you understand more clearly what interfaces are for.

AJ/ Week 15-Lecture 29-30 Object Oriented Programming using Java (ECS-122)

An interface describes the behavior that classes implementing the interface must have.

'Behavior' is a collection of methods.

An interface is a reference type in Java. It is similar to class. It is a collection of abstract
methods. A class implements an interface, thereby inheriting the abstract methods of the

interface.

Along with abstract methods, an interface may also contain constants, default methods,
static methods, and nested types. Method bodies exist only for default methods and static

methods.

Writing an interface is similar to writing a class. But a class describes the attributes and

behavior of an object and an interface contains behaviors that a class implements.

Like a class, an interface can have methods and variables, but the methods declared in

interface are by default abstract (only method signature, no body).

= |nterfaces specify what a class must do (not how). It is the blueprint of the class.
= |f a class implements an interface and does not provide method bodies for all functions

specified in the interface, then class must be declared abstract.
However, an interface is different from a class in several ways, including:

= We cannot instantiate an interface.

= Aninterface does not contain any constructors.

= All of the methods in an interface are abstract.

= An interface cannot contain instance fields. The only fields that can appearin an
interface must be declared both static and final.

= Aninterface is not extended by a class; it is implemented by a class.

= An interface can extend multiple interfaces.

AJ/ Week 15-Lecture 29-30 Object Oriented Programming using Java (ECS-122)

Declaring Interfaces

The interface keyword is used to declare an interface. Here is a simple example to declare an

interface -

Example

Following is an example of an interface.

import java.lang.*;
public interface NameOfInterface {
// Any number of final, static fields

// Any number of abstract method declarations\

}

Interfaces have the following properties -

= Aninterface is implicitly abstract. You do not need to use the abstract keyword while
declaring an interface.

= Each method in an interface is also implicitly abstract, so the abstract keyword is not
needed.

= Methods in an interface are implicitly public.

Example

interface Animal {
public void eat();

public void travel();

AJ/ Week 15-Lecture 29-30 Object Oriented Programming using Java (ECS-122)

Why do we use interface?

Abstract classes may contain non-final variables, whereas variables in interface are final and

static.

= |tis used to achieve total abstraction.

= Since java does not support multiple inheritance in case of class, but by using interface
it can achieve multiple inheritance.

= Interfaces are used to implement abstraction. So the question arises why use interfaces

when we have abstract classes?

Implementing Interfaces

When a class implements an interface, you can think of the class as signing a contract,
agreeing to perform the specific behaviors of the interface. If a class does not perform all the

behaviors of the interface, the class must declare itself as abstract.

A class uses the implements keyword to implement an interface. The implements keyword

appears in the class declaration following the extends portion of the declaration.

Example

public class Mammallnt implements Animal {
public void eat() {
System.out.println("Mammal eats");
}
public void travel() {

System.out.println("Mammal travels");

AJ/ Week 15-Lecture 29-30 Object Oriented Programming using Java (ECS-122)

public int noOfLegs() {
return 0;

}

public static void main(String args|[]) {
Mammallnt m = new Mammallnt();
m.eat();

m.travel();

}

This will produce the following result -

Output

Mammal eats

Mammal travels

Example: Vehicle interface

Let’s consider the example of vehicles like bicycle, car, bike......... , they have common
functionalities. So, we make an interface and put all these common functionalities. And lets
Bicylce, Bike, caretc implement all these functionalities in their own class in their own way.
import java.io.*;
interface Vehicle {

// all are the abstract methods.

void changeGear (int a);

void speedUp (int a);
void applyBrakes (int a);

AJ/ Week 15-Lecture 29-30 Object Oriented Programming using Java (ECS-122)

class Bicycle implements Vehicle/{

}

int speed;
int gear;

// to change gear
@QOverride
public void changeGear (int newGear) {

gear = newGear;

}

// to increase speed
@Override
public void speedUp (int increment) {

speed = speed + increment;

}

// to decrease speed
@Override
public void applyBrakes (int decrement) {

speed = speed - decrement;

}

public void printStates() {
System.out.println ("speed: " + speed
+ " gear: " + gear);

class Bike implements Vehicle {

int speed;
int gear;

// to change gear
@Override

public void changeGear (int newGear) {

gear = newGear;

AJ/ Week 15-Lecture 29-30 Object Oriented Programming using Java (ECS-122)

// to increase speed
@Override
public void speedUp (int increment) {

speed = speed + increment;

}

// to decrease speed
@Override
public void applyBrakes (int decrement) {

speed = speed - decrement;

}

public void printStates() {
System.out.println ("speed: " + speed
+ " gear: " + gear);

}

class MainClass {
public static void main (String[] args) {

// creating an inatance of Bicycle
// doing some operations

Bicycle bicycle = new Bicycle();
bicycle.changeGear (2);
bicycle.speedUp (3);
bicycle.applyBrakes (1) ;

System.out.print ("Bicycle present state:- ");
bicycle.printStates();

// creating instance of bike.
Bike bike = new Bike();
bike.changeGear (1) ;
bike.speedUp (4) ;
bike.applyBrakes (3);

System.out.print ("\nBike present state:- ");
bike.printStates () ;

10

AJ/ Week 15-Lecture 29-30 Object Oriented Programming using Java (ECS-122)

Output;
Bicycle present state:- speed: 2 gear: 2
Bike present state:- speed: 1 gear: 1

When overriding methods defined in interfaces, there are several rules to be followed -

= The signature of the interface method and the same return type or subtype should be

maintained when overriding the methods.

= Animplementation class itself can be abstract and if so, interface methods need not be

implemented.
When implementing interfaces, there are several rules -

= Aclass can implement more than one interface at a time.
= A class can extend only one class, but implement many interfaces.
= An interface can extend another interface, in a similar way as a class can extend

another class.

Another Example: Messenger interface

If we want to create several messengers, the easiest thing to do is to creating a Messenger

interface. What does every messenger need? At a basic level, they must be able to receive and

send messages.

public interface Messenger{
public void sendMessage();

public void getMessage();
}

Now we can simply create our messenger classes that implement the corresponding interface.

The compiler itself will 'force' us to implement them in our classes.

11

AJ/ Week 15-Lecture 29-30 Object Oriented Programming using Java (ECS-122)

Telegram:
public class Telegram implements Messenger {
public void sendMessage() {

System.out.println("Sending a Telegram message!");

}

public void getMessage() {
System.out.println("Receiving a Telegram message!");
¥

}
WhatsApp:

public class WhatsApp implements Messenger {
public void sendMessage() {

System.out.println("Sending a WhatsApp message!");
}

public void getMessage() {
System.out.println("Reading a WhatsApp message!");

}
}

Viber:
public class Viber implements Messenger {
public void sendMessage() {

System.out.println("Sending a Viber message!");

}

public void getMessage() {
System.out.println("Receiving a Viber message!");
}

}

What advantages does this provide? The most important of them is loose coupling. Imagine

that we're designing a program that will collect client data. The Client class definitely needs a

12

AJ/ Week 15-Lecture 29-30 Object Oriented Programming using Java (ECS-122)

field to indicate which specific messenger the client is using. Without interfaces, this would
look weird:
public class Client {

private WhatsApp whatsApp;

private Telegram telegram;
private Viber viber;

}

But why do we need interfaces for this? That's a good question — and the right question!

Can't we achieve the same result using ordinary inheritance?

The Messenger class as the parent, and Viber, Telegram, and WhatsApp as the children.

Indeed, that is possible.

But there's one snag. As you already know, Java has no multiple inheritance. But there is

support for multiple interfaces. A class can implement as many interfaces as you want.
Now the Telegram class can easily implement both interfaces! Accordingly.
public class Telegram implements Application, Messenger {

// ...methods

Default methods

An interesting addition appeared in Java 8 — default methods.

For example, your interface has 10 methods. 9 of them have different implementations in
different classes, but one is implemented the same for all. Previously, before Java 8, interface

methods had no implementation whatsoever: the compiler immediately gave an error.
Now you can do something like this:

public interface CanSwim {

13

AJ/ Week 15-Lecture 29-30 Object Oriented Programming using Java (ECS-122)

public default void swim() {
System.out.println("Swim!");

}

public void eat();

public void run();

}

Using the default keyword, we've created an interface method with a default implementation.
We need to provide our own implementation for two other methods — eat() and run() — in all
classes that implement CanSwim. We don't need to do this with the swim() method: the

implementation will be the same in every class.

Extending Interfaces

An interface can extend another interface in the same way that a class can extend another
class. The extends keyword is used to extend an interface, and the child interface inherits the

methods of the parent interface.
The following Sports interface is extended by Hockey and Football interfaces.

Example

// Filename: Sports.java
public interface Sports {
public void setHomeTeam(String name);
public void setVisitingTeam(String name);
}
// Filename: Football.java
public interface Football extends Sports {

public void homeTeamScored(int points);

14

AJ/ Week 15-Lecture 29-30 Object Oriented Programming using Java (ECS-122)

public void visitingTeamScored(int points);
public void endOfQuarter(int quarter);
}
public interface Hockey extends Sports {
public void homeGoalScored();
public void visitingGoalScored();
public void endOfPeriod(int period);

public void overtimePeriod(int ot);

}

The Hockey interface has four methods, but

= it inherits two from Sports; thus, a class that implements Hockey needs to implement
all six methods.
= Similarly, a class that implements Football needs to define the three methods from

Football and the two methods from Sports.

Extending Multiple Interfaces

A Java class can only extend one parent class. Multiple inheritance is not allowed. Interfaces
are not classes, however, and an interface can extend more than one parent interface. The
extends keyword is used once, and the parent interfaces are declared in a comma-separated

list.
For example, if the Hockey interface extended both Sports and Event, it would be declared as -

Example

public interface Hockey extends Sports, Event

15

AJ/ Week 15-Lecture 29-30 Object Oriented Programming using Java (ECS-122)

Understanding concept of interfaces

1-

Simplest Answer: Suppose your parents gives you a list of items to purchase,
that list is an Interface that you will implement at time of purchasing. Means before
implementing anything, you list out what you have to done that will be interface.

Real World: You have an Animal class. It is an abstract class, because you cannot
instantiate a generic "Animal," but it provides base functionality.

You have many derived classes of Animal. You have HomoSapiens, Platypus, Penguin
(which extends Bird, another subclass of Animal), Giraffe, Housefly, etc. Each of these
are concrete classes that may be instantiated (of course, there are several levels of
abstract classes between these and Animal (like Chordata, etc.)

Now you want to make something fly. What can fly? Birds and Houseflys (among
others), so these classes should provide similar functionality, even though they are
widely spaced on our inheritance tree.

Solution: Make them use interfaces. Bird and Housefly cannot both implement the

Flyer interface, so whenever we want something to fly, we can use a Flyer object, not
caring whether it's a Bird or a Housefly. Likewise, Penguins and Playtpuses can
implement the Swimmer interface

Business examples: | have a persistance engine that will work against any data
sourcer (XML, ASCII (delimited and fixed-length), various JDBC sources (Oracle, SQL,
ODBC, etc.) | created a base, abstract class to provide common functionality in this
persistance, but instantiate the appropriate "Port" (subclass) when persisting my
objects. (This makes development of new "Ports" much easier, since most of the
work is done in the superclasses; especially the various JDBC ones; since | not only do
persistance but other things [like table generation], | have to provide the various
differences for each database.)

The best business examples of Interfaces are the Collections. | can work with a
java.util.List without caring how it is implemented; having the List as an abstract class
does not make sense because there are fundamental differences in how an ArrayList
works as opposed to a LinkedList. Likewise, Map and Set. And if | am just working
with a group of objects and don't care if it's a List, Map, or Set, | can just use the
Collection interface.

Hope that this helps

16

